Integrated Chickpea diseases management for Fusarium wilt and Ascochyta blight

Gezahegne Getaneh (PhD student)

Supervisors: Tadele Tefera (PhD)

Fikre Lemessa (Professor)

Seid Kemal (PhD)

icipe Annual review and Planning meeting July 24-27/2018

Nairobi, Kenya

Outline

- Background
- Objectives
- Study sites
- Achievements
- Conference
- Papers under review
- Ongoing activities
- Acknowledgement

Background

- Chickpea is one of the most important pulses crops and significantly contribute to the livelihoods of smallholder farmers in Ethiopia.
- pro-poor crop in Ethiopia
- Over a million rural households are engaged

It covers:

- 2.1% of the total crop area cultivated
- 15.6% of area of pulse crops
- 14.3% pulse crops production (CSA, 2016).
- area increased by 43% from 2005 to 2015 while yields increased from 964 kg/ha to 1913 kg/ha (98%)
- over 25 improved varieties were developed
- yield = 2.8 t ha⁻¹ on research stations and 1.8 t ha⁻¹ on farmers' field
- The gap could be due to the difference in management

Common bean 22%

Background...

- Its productivity is below its potential and product quality, as the result of a several biotic and abiotic stresses.
- Over ten disease pathogens were reported in Ethiopia most of which are fungal.
- The major root diseases (fusarium wilt, collar rot and dry root rot) and foliar diseases (ascochyta blight) responsible for low yields.

Statement of the problem

- Despite injection of some improved chickpea production technologies to the producers;
- Chickpea diseases are increasing overtime
- Chickpea diseases management were not well addressed

Study areas

Chickpea production distribution and sample areas map (CSA. 2016/5/16)

www.icipe.org

Objectives

• Major objective: to develop, evaluate eco-friendly integrated chickpea disease management technologies

Specific Objectives:

- to determine the level of chickpea seed health in Ethiopia
- to characterize the diversity of the pathogen Ascochyta rabiei
- To Evaluate the bioagents (trichoderma) to manage fusarium wilt
- To assess Farmers perception on chickpea diseases and support service assessment
- To screen fungicide chemicals for ascochyta blight management
- To identify the Ascochyta rabiei mating type in Ethiopia

Achievements

1. Seed Quality and Mycoflora Associated with Chickpea (*Cicer arientinum* L.) Seed in Ethiopia

Materials and Methods

- Ninety-nine seed sample for physical purity.
- While 76 seed samples were used for testing germination and seed health
- About 500g of seed lot was collected per sample
- The sample diagnoses were carried out at Haramaya University and Debre Zeit Agricultural Research and all testing were done following ISTA standard method.

Results

- Chickpea seeds from research centre had the highest physical purity (97.5%) than seed from farmers (87.4%) and seed grower's (90.8%)
- The level of seed germination were ranged from 96% to 98% among the three seed categories

Results...

- 17 species of mycoflora recovered from the current test, 11 were common for all seed samples.
- A. flavus, Penecillium sp., and Fusarium sp. were the most dominant fungi recovered (61.7 - 63.9%) of seed lots.
- The highest seed infection by *A. flavus* was observed in farmers' seed (6.4%) compared to seed from research centers (3.1%) and seed growers (4%).
- The genus Aspergillus was the most dominant contaminant with seed lots followed by Penicillium sp. (4.2% and 3%) respectively.

Seed sources and level of infection (%)				Overall (%)		% of			
Research	Isolated Fungi sp.	Farmers	Isolated Fungi sp.	Seed Growers	Isolated Fungi sp.	Mean	Isolated Fungi sp.	infected seed lots	Isolated Fungi sp.
3.13a	4	6.39a	4	4.00a	8	4.20a	4	63.88a	8
1.83b	8	3.32b	8	3.68ba	1	3.05ba	8	63.87a	1
1.50cb	11	2.47cb	2	3.08bc	4	2.43bc	1	61.69a	4
1.41cbd	9	2.38cb	1	1.90dc	2	1.65dc	9	46.26ba	2
1.23cbde	1	1.29cd	3	1.41dc	9	1.61dce	2	29.17bc	3
1.22cbde	12	0.59d	9	0.90d	10	0.80de	12	23.17dc	9
0.88cbde	3	0.50d	17	0.83d	12	0.75de	3	22.74dc	12
0.82cbde	17	0.45d	11	0.28d	16	0.72de	11	21.64dc	11
0.42cde	2	0.41d	13	0.22d	11	0.49de	17	17.56dc	16
0.22cde	7	0.36d	12	0.14d	17	0.32de	10	15.65dc	17
0.20cde	13	0.25d	7	0.09d	15	0.23de	13	15.05dc	13
0.18cde	16	0.12d	16	0.09d	3	0.20de	16	7.52dc	10
0.17de	6	0.09d	5	0.07d	13	0.16de	7	5.13dc	14
0.15de	14	0.08d	10	-	6	0.06e	6	3.87d	7
-	15	-	6	-	7	0.05e	14	2.78d	15
-	10	-	14	-	14	0.03e	5	2.56d	6
-	5	-	15	-	5	0.03e	15	0.65d	5

1.Fusarium sp.; 2. Aspergilus sp.; 3. A. niger; 4. A. flavus; 5. A. nidulans; 6. A. candidus; 7. A. fumigatus; 8. Penecillium sp.; 9. Rhizopus sp.; 10. Verticilium sp.; 11. Rhizoctonia sp.; 12. Pythium sp.; 13. Alternaria sp.; 14. Helmintosporium sp.; 15. Phylostica sp., 16. Cladosporium sp.; 17. Negrospora sp.

^{(-):} the specified pathogen was not recovered

Conclusion and recommendations

- there is seed quality and seed health management issues with all different seed sources.
- This entails for strong seed quality control and growers awareness creation.
- Seed growers should keep wider interval of rotation and seed treatment by fungicides.
- Seed grading to avoid loss of physical purity
- Use of Appropriate storage container (ventilated and clean).

2. Farmers' perception of chickpea production, disease pest and management support services in Ethiopia

Materials and Methods

- 2-3 Kebeles/ district and about 10-13 respondents were selected randomly per kebele a total of 293 sample households.
- Thirty respondents (from each) were selected randomly from nine districts only for the question "why farmers do not use pesticide for chickpea diseases?" and the responses were analyzed.
- areas were selected purposely based on their chickpea production potential
- Semi-structured questionnaire was developed
- Information on chickpea pests with their significance, management and support system were also assessed.

•

Materials and methods

Study area

Results Socio-economic

Education background

Cropping system

Character	Frequency	percentage
Subsequent crop		
Subsequent crop		
Wheat	55	18.8%
• Chickpea	9	3.1%
-		-1 -0/
• Teff	151	51.5%
• Faba Bean	6	2.0%
• 1&3	16	5.5%
• Other	56	19.1%
Preceding crop		
• Wheat	64	21.8%
• Chickpea	20	6.8%
• Teff	141	48.1%
• Faba Bean	2	0.7%
• Wheat & Teff	12	4.1%
• Others	54	18.4%

Character	Frequency	percentage
Use of Fertilizer		
• Yes	100	34.1%
• No	193	65.9%
Amount per hectare		
• 100-150kg	68	23.2%
• 151-201kg	23	7.8%
• >202kg	4	1.4%
• Not using	198	67.6%
Type of fertilizer		
 Organic 	21	7.2%
• Inorganic	78	26.6%
Not using	194	66.2%
Use of Irrigation		
• Yes	50	17.1%
• No	243	82.9%

Chickpea storage type and duration of chickpea in Ethiopia

Character	Frequency	percentage	Chi-square	P<0.0001
Storage			130.186	0.000
• Bags/plastic	188	64.2%		
Granaries/ traditional	102	34.8%		
Duration			133.413	0.000
• 3-6months	193	65.9%		
• 1-1.5yr	80	27.3%		
• 1.6-2.5yr	7	2.4%		
• >2.6	7	2.4%		

Seed sources

Character	Frequency	percentage
Seed Sources		
• Research center	73	24.9%
• cooperatives	69	23.5%
• locals/relatives	121	41.3%
• unions	25	8.5%
• NGO	3	1.0%
Frequency to change seed		
• every year	56	19.1%
• every two years	109	37.2%
• every three years	94	32.1%
• every four years	12	4.1%
 never change 	20	6.8%

Major Chickpea production constraints at studied districts of Ethiopia

Character	Frequency	percentage
Production		
Constraints		
 climate change 	38	13.17%
drought	7	2.2%
weeds	14	4.72%
• insects	8	2.8%
diseases	37	12.8%
 vertebrates 	62	23%
shortage improved seeds	59	20%
 land shortage 	5	1.68%
• excess RF	45	15.55%

Pest Advisory system of chickpea growing areas of Ethiopia

Variables	Frequency	percentage
Pest Advisory services		
• yes	280	95.6%
• no	13	4.4%
Source of advisory		
• DA	97	36.89%
relatives	30	10.46%
neighbor	35	13.12%
field day	29	9.9%
• PHC	1	0.3%
• radio	21	7.32%
 farmers field school 	23	7.96%
 Television 	18	6.11
Farmers Group	22	7.66

www.icipe.org

Chickpea diseases and their Management options

Variables	Frequency	percentage
Chickpea diseases		
• yes	267	91.1%
• no	26	8.9%
Type diseases		
 wilt complex 	134	45.7%
 Ascochyta blight 	14	4.8%
• virus	8	2.7%
 damping off 	21	7.2%
• Rust	46	15.7%
 no diseases 	20	6.8%
• 2,3	14	4.8%
• 1,2	31	10.6%
• 1,3	5	1.7%

Fungicide application for chickpea diseases in Ethiopia

Variables	Frequency	percentage	
Use of Fungicide			
• Yes	109	37.2%	
• No	184	62.8%	
Crop stage to spray			
1. seed	20	6.8%	
1. seedling	26	8.9%	
1. flowering	27	9.2%	
1. podding	10	3.4%	
1. maturity	7	2.4%	
• 2,3	37	12.6%	
not using	166	56.7%	

Pesticide spray volume determination, personal protective material and pesticide product information of chickpea diseases in Ethiopia

Variables	Frequency	percentage
Reading of labels during purchase		
• yes	167	57.0%
• no	126	43.0%
Spray amount determination		
 label recommendation 	190	64.8%
guessing	81	27.6%
• other	21	7.2%
Empty container		
 burying 	64	26.25%
 burning 	59	24.55%
 home service 	100	34.1%
• others	38	13.0%

Cont....

Variables	Frequency	percentage
• Personal protective		
• yes	89	30.4%
• no	203	69.3%
Information about		
the product		
• DA	86	29.57%
• Agents	29	10.12%
 Neighbor 	34	11.65%
• TV	50	17.2%
• Experience	8	2.7%
• Research	45	18.2%

Conclusions

- Chickpea research has collaboration with ICRISAT, ICARDA, USAID, ADA, BMGF...
- pest management technologies (support service) were not equally addressed.
- Effective and affordable methods for controlling pests poorly disseminated in comparison to the investment on chickpea variety.
- disease management support service should be communicated as full-flagged holistic approach.
- The collaborating projects need to revise their strategy to include the pest management support service together with breeding

www.icipe.org

3. Evaluation of the antagonistic property of *Trichoderma isolates a*gainst *Fusarium* oxysporum f.sp. ciceri at different temperature ranges

 Objective: To evaluate the antagonistic property of Trichoderma isolates against Fusarium oxysporum f.sp. ciceri at different temperature ranges

Materials and Methods

- Antagonistic potential of the *Trichoderma* isolates were tested by dual culture technique on PDA.
- ❖ Pure culture of the wilt fungus isolates were used
- ❖at opposite ends at equal distance from centre were incubated at 25 ± 1°C
- at different temperature ranges where both organism can grow well
- ❖ Percent growth inhibition was recorded on 3rd to 8th day

Cont...

Inhibition level

In dual cultures, *Trichoderma* spp. were categorized as effective, based on their:

- >ability to over grow and
- inhibit the growth of the pathogens (radial growth)

Where R1 =100% over growth, R2 = 75% over growth, R3 = 50% over growth, R4 = locked at the point of contact.

Where

L = Percentage inhibition of radial growth of pathogen

C = Radial growth of the pathogen (cm) in control

T = Radial growth of the pathogen (cm) in treatment

Cont...

- The radial growth of the test pathogen were measured and analyzed at different temperature ranges *viz.*, 5°C, 15°C, room temperature (23°C), 30°C and 40°C were tested.
- Test bio-agent (From APPRC)
- T.atroviride
- T.longibrachatum
- T.harzianum
- T.viride
- T.hamatum
- T.asperilum
- Control

Results

Radial growth on the 8th day after inoculation

	Bio- control Agent		Radial Growt (mm) at diffe on 8 th day			Inhibition (% Different Ter	
		15 °C	23 °C	30 °C	15 °C	23 °C	30 °C
1	T.atroviride	1.50	2.13	1.27	68.28	54.29	70.8
2	T.longibrach atum	1.43	1.87	1.00	69.66	60.00	76.9
3	T.harzianum	1.60	2.07	1.47	66.90	55.71	66.2
4	T.viride	1.60	1.87	1.13	65.52	60.00	73.8
5	T.hamatum	1.61	1.93	1.67	66.90	58.57	61.5
6	T.asperilum	1.61	1.83	1.40	66.90	60.71	67.7
7	Control	4.85	4.67	4.33	0	0.00	0.0

The Trichoderma isolates that incubated in 5°C and 40°C temperature, were not germinated on daily observation till 10th day after inoculation.

Maximum inhibition zone were recorded for *T.longibrachatum* that was 76.9 % at 30°C and the least inhibition zone was recorded from *T.atroviride* with the value of 54.29% at 23°C.

Cont...

- Interaction between pathogen and antagonist under microscope showed that *Trichoderma* spp. were interacting with Fusarium wilt hyphae.
- Antagonist hyphae were observed to be growing towards Fusarium wilt hyphae and coiled around the hyphae.

www.icipe.org

Conclusion

- Most the Trichoderma species were found significantly different
 - ➤In their radial growth and
 - ➤ to inhibit the wilt pathogen at in-vitro test on different temperature ranges.
- The temperature ranges may help to correlate with soil temperature of the growing areas
- ❖ The hottest temperature (40°C) and the lower (cooler) 5°C were not suitable for Ethiopian collection isolates to grow.
- ❖ Relatively *T. viride* has got better performance in its growth ratio and efficacy.
- Two of the bio-agent isolates will be further tested at in-vivo on micro plot with standard design and carriers to enhance their efficacy.

Paper under review

 Seed Quality and Mycoflora Associated with Chickpea (Cicer arientinum L.) Seed in Ethiopia

Presentations

 It was presented at seed technology workshop held in Ethiopia which organized by ICRISAT and EIAR (DZ center).

Ongoing experiments

- Characterization of the pathogen type/diversity of ascochyta blight from chickpea growing areas of the country
- Ascochyta blight mating type identification
- Evaluation of bio-agents (Trichoderma) against chickpea Fusarium wilt disease
- Integrated (fungicide with variety) Ascochyta blight chickpea disease management

Acknowledgements

Thank you

International Centre of Insect Physiology and Ecology

P.O. Box 30772-00100, Nairobi, Kenya

Tel: +254 (20) 8632000

E-mail: icipe@icipe.org
Website: www.icipe.org

Support icipe: www.icipe.org/support-icipe

facebook.com/icipe.insects/icipe

twitter.com/icipe

in linkedin.com/company/icipe