
BORNE BACTERIAL DISEASES

Dr. Sally Miller
Department of Plant Pathology
The Ohio State University
Wooster, OHIO USA

Outline

- "Important seed-borne bacterial pathogens
- " Economic importance
- "Bacterial detection in seeds
- "Seed chain . bacterial disease management

Seed-borne Bacterial Diseases

- "The majority of bacterial diseases of plants are seed-borne
 - "True seed
 - "Vegetative planting material
- "Most bacterial diseases cannot be managed adequately using currently available bactericides, especially in the tropics

Black rot of cauliflower in Bangladesh

Unlimited Pages and Expanded Features

Bacterial Pathogens Borne in True Seed

Crop	Pathogen(s)		
Wheat	Pseudomonas syringae pv. syringae, Xanthomonas campestris pv. translucens		
Maize	Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. nebraskensis		
Rice	X. oryzae pv. oryzae, X. oryzae pv. oryzicola, Acidovorax oryzae		
Bean	P. syringae pv. phaseolicola, Curtobacterium flaccumfaciens pv. flaccumfaciens, Xanthomonas campestris pv. phaseoli and X. fuscans var. fuscans		
Soybean	P. syringae pv. glycinea		
Chickpea	Rhodococcus fascians		
Cereals, grasses	Rathayibacter sp.		
Alfalfa	C. michiganensis subsp. insidiosus		

Unlimited Pages and Expanded Features

Bacterial Pathogens Borne in True Seed

Crop	Pathogen(s)	
Tomato Pepper	Pseudomonas syringae pv. tomato (tomato), P. syringae pv. syringae, Xanthomonas spp., Clavibacter michiganensis subsp. michiganensis	
Carrot	Xanthomonas campestris pv. carotae	
Onion	Pantoea ananatis, Burkholderia cepacia	
Crucifers	Xanthomonas campestris pv. campestris, P. syringae pv. alisalensis (broccoli), Pseudomonas spp. (crucifers)	
Cucurbits	P. syringae pv. lachrymans, Acidovorax citrulli	
Lettuce	Xanthomonas campestris pv. vitians	

thogens in Vegetative Planting

Material

Crop	Pathogen(s)		
Potato	Clavibacter michiganensis subsp. sepedonicus, Ralstonia solanacearum, Streptomyces scabies, Candidatus Liberibacter sp., Erwinia/Dickeya spp.,		
Citrus	Candidatus Liberibacter asiaticus, Xylella fastidiosa subsp. pauca, Xanthomonas citri		
Strawberry	X. fragariae		
Grape, almond	Xylella fastidiosa subsp. fastidiosa,		
Pear, apple, quince	Erwinia amylovora		
Sugarcane	Leifsonia xyli subsp. xyli, Xanthomonas albilineans		
Cassava	Xanthomonas campestris pv. cassavae		
Banana	X. campestris pv. musacearum		

Bacterial Diseases

- True seed should be produced in dry climates to minimize bacterial disease risk
- "Seed now produced globally in environments conducive to bacterial diseases
- " Hybrid seed produced where labor costs are low
- "Global trade in seeds and vegetative material results in potential for introduction of new pathogens/races from source to recipient regions

ortance of True Seed-borne

Bacterial Diseases

"Bacterial canker . tomato

- Most destructive disease of tomatoes
- * \$ Millions in losses: yield and management costs in greenhouse tomatoes
- 70-80% losses reported in field tomatoes

"Black rot . crucifers

- Most destructive disease of crucifers
- " Untold losses in yield and quality

for Bacterial Multiplication and Spread

- Many vegetable crops initiated transplants
 - " Greenhouse-grown
 - " Seedbeds
- Transplant production systems offer ideal conditions for bacterial reproduction and spread

Propagated Bacterial Diseases

- "Ring Rot. potato
 - " Highly destructive
 - " Managed by seed certification programs
- "Banana Xanthomonas Wilt
 - "Highly destructive in East Africa
 - Major food crisis in Uganda in 2000s



True Seed-borne Bacterial

Pathogens

- "Seed health testing
 - " Important means of reducing disease risk
 - " Direct testing
 - " Symptoms/grow-outs
 - " Isolation of pathogen
 - " Identification
 - Proof of pathogenicity
 - " Indirect testing
 - Detection of proteins (serological)
 - Detection of nucleic acids (PCR, isothermal amplification, etc.)

True Seed-borne Bacterial

Pathogens

"Issues

- " Identification of appropriate causal agent (specificity)
- " Low levels of infestation (sensitivity)
- " Dead vs. live bacteria

" Inhibitors of ELISA/PCR in seed extracts

" Potential solutions

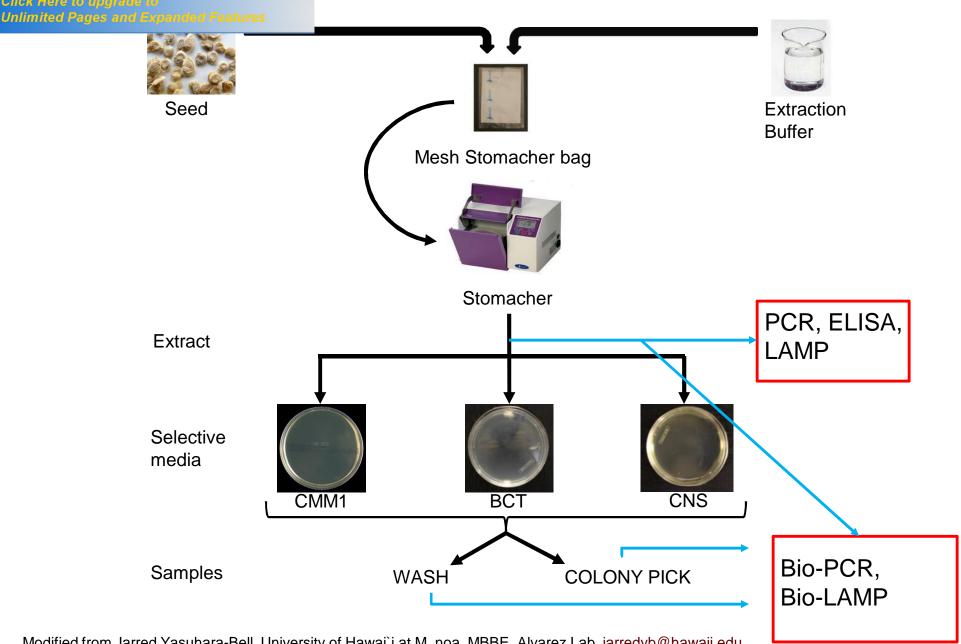
- Enhanced specificity of detection method
- Concentration of seed extract; enrichment; enhanced assay sensitivity
- " Enrichment

- " Separation of bacteria from extract
 - " Immunomagnetic separation
 - " Filtration

g: Grow-outs to Detect Bacterial Pathogens in Seed Lots

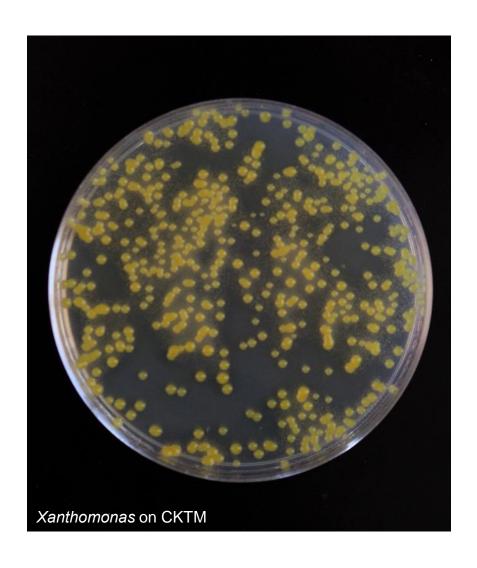
- "Longest-standing method
- " Highly selective
- "Sensitivity varies
- " 30,000 seeds per seedlot need to be tested to meet infestation threshold (I in 10,000)
 - Very high labor and infrastructure costs

g: Grow-outs to Detect Bacterial Pathogens in Seed Lots


- " Environmental conditions must be conducive
 - " High relative humidity
 - Temperature optima
- " Avoid cross-contamination between seedlots
 - Barriers
 - " Space
 - Limit passive contamination by vectors
- Follow up with isolation and testing

Direct Testing: Isolation from Seed Lots

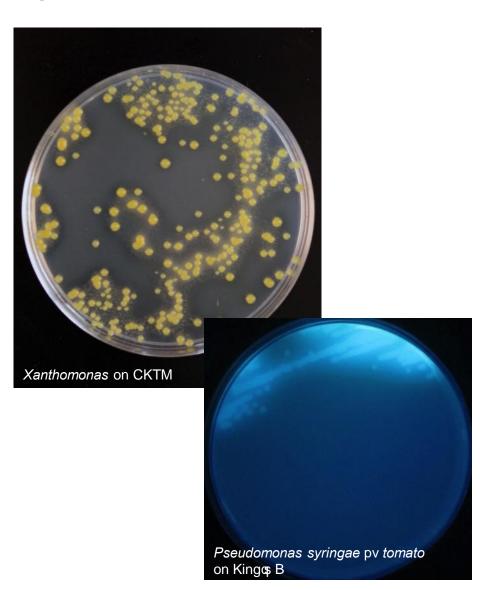
- " Extraction
 - " Seed soak (passive)
 - " Stomacher (crushing)
- Direct testing or biological amplification to increase sensitivity
- "Isolation on semi-selective and diagnostic media
- " Identification
- "Pathogenicity


Click Here to upgrade to

Modified from Jarred Yasuhara-Bell, University of Hawai'i at M noa, MBBE, Alvarez Lab, jarredyb@hawaii.edu

Pathogen Isolation . Semi-selective Media

- " Media that favor the growth of target bacteria over other microorganisms
- "Based on nutritional requirements and physiological tolerances of target bacteria
 - " Utilizable carbon, nitrogen sources
 - " Antibiotics, dyes
 - " pH, high sucrose

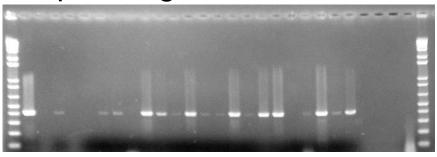


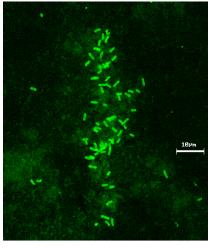
Pathogen Isolation. Diagnostic Media

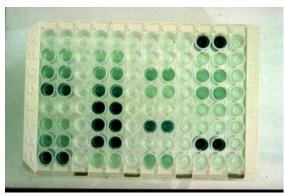
Media that differentiate target bacteria based on colony appearance or changes in medium

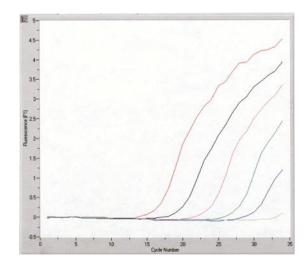
Examples

- CVP- pits in medium differentiate pectinolytic bacteria
- CKTM/Tween B . white precipitate and clear zones differentiate Xanthomonas spp.
- "Kingqs B/PF. fluorescent colonies

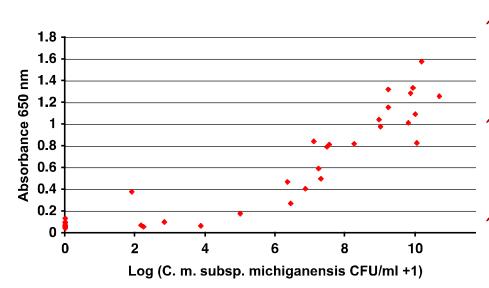

Semi-selective Media Issues


- Strain variation
 - Some strains dong grow . recovery rates vary
 - Strains differ in appearance
- Source of medium ingredients
 - " Brand, lot
- Post-harvest seed treatments
 - " Chemical, biological
- " Age of seedlot
- Microflora may inhibit growth . natural antibiotic production
 - " Spiked control (marked strain) needed



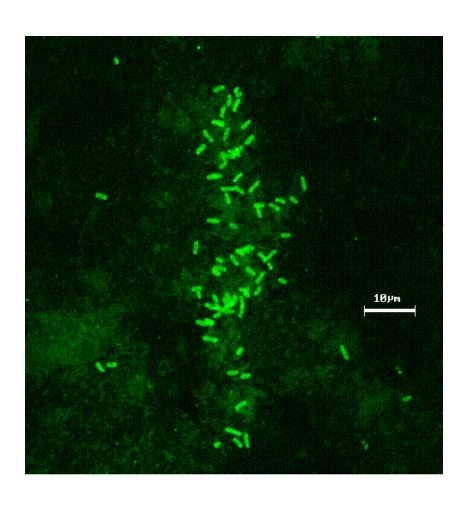

Identification of Isolated Bacteria

- "Immunoassays
 - " ELISA
 - " Immunofluorescence
- " DNA Amplification
 - " End-point PCR
 - " Quantitative PCR (real time)
 - "Isothermal amplification (e.g. LAMP)
- "Sequencing



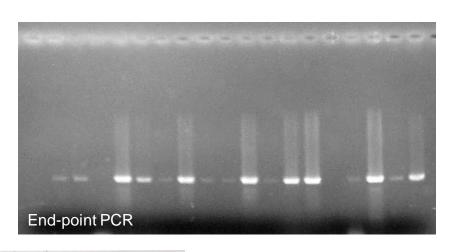
Detection Methods: Immunoassay

" ELISA is rapid, easy to use and relatively inexpensive

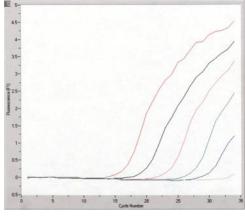

Kits are widely available commercially

Monoclonal and/or polyclonal antibody-based

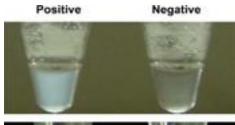
Sensitivity generally no less than ~106 CFU/ml


" False positives of concern

Detection Methods: IF



- "IF-tagged (conjugated Mabs and Pabs available commercially)
 - " Direct IF
 - " Indirect IF
 - " Immunofluorescent tagging combined with morphology increases specificity, but false positives common
- "IF colony staining (IFC) . only viable pathogens detected


DNA Amplification Assays

- Primers published for major bacterial pathogens
- Relatively easy to develop primers for emerging pathogens

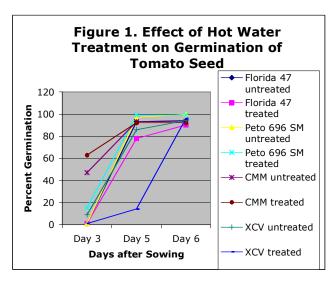
Q-PCR output

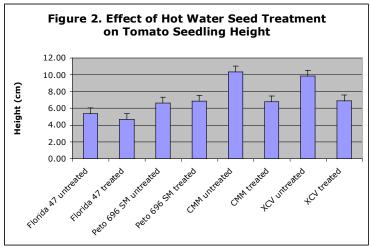
http://www.markergene.com WebNewsletter3.11.htm LAMP Isothermal Assay

- Sensitivity usually greater than ELISA
- " Real-time PCR, isothermal amplification: improvements in sensitivity, portability

Managing Seed-borne

Bacterial Diseases


- "Reduce or eliminate bacterial diseases from seed production fields
 - Zero tolerance in seed production
 - " Ring rot potato
 - Bacterial spot, speck and canker
 - " Rigorous scouting
 - "Cultural practices . sanitized seed, crop rotation, protected culture, strict sanitation
- "Test seed for known high impact pathogens
- "Sanitize seed
 - Often done for positive-testing lots only
 - "Sometimes done for all lots . e.g. black rot of cabbage


Bacterial Pathogens

Hot water treatment

Seed	Water temperature		Minutes
	° F	° C	
Brussels sprouts, eggplant, spinach, cabbage, tomato	122	50	25
Broccoli, cauliflower, carrot, collard, kale, kohlrabi, rutabaga, turnip	122	50	20
Mustard, cress, radish	122	50	15
Pepper	125	51	30
Lettuce, celery, celeriac	118	47	30

Hot Water Treatment - Concerns

- May delay or reduce seed germination, especially in old or poor quality seed lots
- May reduce seedling vigor
- May reduce seed longevity
- Not compatible with other seed treatments (pelleting, priming etc.)
- May be damaging to largeseeded vegetables

Alternative Seed Treatments

- Sodium hypochlorite
 - Lettuce bacterial leaf spot
 - Sahin and Miller Plant Dis. 81:1443-46
 - ~ 0.52% sodium hypochlorite/5 minutes
 - " Highly effective; no effect on germination
- " Peroxyacetic acid
 - " Watermelon fruit blotch
 - " Hopkins et al. Plant Dis. 87:1495-1499
- " Hydrochloric acid
 - Bacterial canker of tomato
 - " 1.24% HCl for 30 min
 - " Highly effective; no effect on germination

More Information

- "Gitaitis, R. and Walcott, R. 2007. The epidemiology and management of seedborne bacterial diseases. Annu. Rev. Phytopathol. 45:371-397.
- "International Seed Health Initiative website: http://www.worldseed.org/isf/ishi.html
- International Seed Testing Association website:
 http://www.seedtest.org/en/home.html
- "Fatmi, Walcott and Schaad (eds) (to be published in late 2014/early 2015). Detection of Plant Pathogenic Bacteria in Seed and Planting Material. APS Press.